Lent 2024

hjrw2@cam.ac.uk

1. Consider the infinite path $\gamma: [1,\infty) \to \mathbb{R}^2$ defined by

 $\gamma(t) = (t\cos(\log t), t\sin(\log t)).$

Prove that γ is a quasigeodesic (for suitable constants). Deduce that the analogue of the Mostow– Morse lemma fails for \mathbb{R}^2 . [You may use that the length of a smooth path in \mathbb{R}^2 can be computed using the integral $\int ||\gamma'|| dt$.]

- 2. Two groups G_1 and G_2 are called *(abstractly) commensurable* if there are subgroups $H_i \leq G_i$ such that $|G_i: H_i| < \infty$ and $H_1 \cong H_2$. Prove that commensurable finitely generated groups are quasi-isometric.
- 3. Let P be a geodesic n-gon in a δ -hyperbolic metric space X. Prove that every side of P is contained in the closed $(n-2)\delta$ -neighbourhood of the other sides of P.
- 4. Let ϕ be an isometry of a δ -hyperbolic metric space X with no fixed point. Suppose that $\alpha, \beta : \mathbb{R} \to X$ are both geodesic lines preserved by ϕ . Prove that $d_{\text{Haus}}(\operatorname{im} \alpha, \operatorname{im} \beta)$ is finite, and furthermore that $d_{\text{Haus}}(\operatorname{im} \alpha, \operatorname{im} \beta) \leq 2\delta$.
- 5. Let ϕ be an isometry of a metric space X.
 - (a) For any $x \in X$, prove that the sequence of real numbers

$$t_n = \frac{d(x, g^n x)}{n}$$

is convergent. [You may use without proof Fekete's subadditivity lemma. A sequence a_n is called subadditive if $a_{m+n} \leq a_m + a_n$ for all m, n. Fekete's lemma asserts that a_n/n converges if a_n is subadditive.]

(b) Prove that $\tau(\phi) = \lim_{n \to \infty} t_n$ does not depend on the choice of x.

The quantity $\tau(\phi)$ is called the *translation length* of ϕ .

6. Let X be a δ -hyperbolic metric space, and let $\alpha, \beta : [0, L] \to X$ be geodesics with $\alpha(0) = \beta(0)$. Prove that

$$d(\alpha(t),\beta(t)) \le 2\delta + d(\alpha(L),\beta(L))$$

for all $t \in [0, L]$.

- 7. Let X be a proper metric space (i.e. closed balls are compact). A subspace $Y \subseteq X$ is called *convex* if every geodesic in X with endpoints in Y is contained in Y.
 - (a) For any $x \in X$ and any non-empty closed subspace $Y \subseteq X$, prove that there is $y_0 \in Y$ such that $d(x, y_0) \leq d(x, y)$ for all $y \in Y$.
 - (b) Give an example of a δ -hyperbolic metric space X, a closed, convex subset $Y \subseteq X$, a point $x \in X$ and a pair of *distinct* points $y_1, y_2 \in Y$ that both minimise distance to x among all points in Y.
 - (c) Let X be δ -hyperbolic and Y a convex subspace. Suppose that $y_1, y_2 \in Y$ both have the property that $d(x, y_i) \leq d(x, y)$ for all $y \in Y$. Prove that $d(y_1, y_2) \leq 4\delta$.

- 8. Let X be a geodesic metric space and consider a geodesic triangle $\Delta = [x, y] \cup [y, z] \cup [z, x]$ in X.
 - (a) Let $p \in [x, y]$ be the point such that

$$2d(p, x) = d(y, x) + d(z, x) - d(y, z)$$

and let $p' \in [x, y]$ be such that

$$2d(p', y) = d(x, y) + d(z, y) - d(x, z)$$

Prove that p = p'.

- (b) Define $q \in [x, z]$ similarly to $p \in [x, y]$. Prove that d(x, p) = d(x, q) and $d(p, q) \le 4\delta$.
- (c) For any $a \in [x, y]$ and $b \in [x, z]$ with

$$d(x,a) = d(x,b) \le d(x,p) \,,$$

prove that $d(a,b) \leq 6\delta$.

9. Let X be a δ -hyperbolic space and $Y \subseteq X$ a bounded subspace. Consider the function $R_Y : X \to \mathbb{R}_{\geq 0}$ defined by

$$R_Y(x) = \sup_{y \in Y} d(x, y) \,.$$

The *radius* of Y is defined to be

$$r_Y := \inf_{x \in X} R_Y(x) \,.$$

A point $x \in X$ is called an ϵ -centre of Y if $R_Y(x) \leq r_Y + \epsilon$. Prove that, if x, x' are both ϵ -centres of Y, then $d(x, x') \leq 12\delta + 2\epsilon$. [Hint: Let m be the midpoint of [x, x'] and consider $y \in Y$ such that $d(m, y) \geq r_Y$.]

- 10. Let G be a hyperbolic group and S a finite generating set. Let $\gamma \in G$ be an element of finite order.
 - (a) Show that $\langle \gamma \rangle \subseteq \operatorname{Cay}_S(G)$ has a 1-centre $g \in G$, in the sense of Question 9.
 - (b) Prove that γg is also a 1-centre of $\langle \gamma \rangle$.
 - (c) Deduce that G has finitely many conjugacy classes of elements of finite order.