III Geometric group theory - Example Sheet 4

Lent 2024
hjrw2@cam.ac.uk

1. Consider the infinite path $\gamma:[1, \infty) \rightarrow \mathbb{R}^{2}$ defined by

$$
\gamma(t)=(t \cos (\log t), t \sin (\log t))
$$

Prove that γ is a quasigeodesic (for suitable constants). Deduce that the analogue of the MostowMorse lemma fails for \mathbb{R}^{2}. [You may use that the length of a smooth path in \mathbb{R}^{2} can be computed using the integral $\int\left\|\gamma^{\prime}\right\| d t$.]
2. Two groups G_{1} and G_{2} are called (abstractly) commensurable if there are subgroups $H_{i} \leq G_{i}$ such that $\left|G_{i}: H_{i}\right|<\infty$ and $H_{1} \cong H_{2}$. Prove that commensurable finitely generated groups are quasi-isometric.
3. Let P be a geodesic n-gon in a δ-hyperbolic metric space X. Prove that every side of P is contained in the closed $(n-2) \delta$-neighbourhood of the other sides of P.
4. Let ϕ be an isometry of a δ-hyperbolic metric space X with no fixed point. Suppose that $\alpha, \beta: \mathbb{R} \rightarrow$ X are both geodesic lines preserved by ϕ. Prove that $d_{\operatorname{Haus}}(\operatorname{im} \alpha, \operatorname{im} \beta)$ is finite, and furthermore that $d_{\text {Haus }}(\operatorname{im} \alpha, \operatorname{im} \beta) \leq 2 \delta$.
5. Let ϕ be an isometry of a metric space X.
(a) For any $x \in X$, prove that the sequence of real numbers

$$
t_{n}=\frac{d\left(x, g^{n} x\right)}{n}
$$

is convergent. [You may use without proof Fekete's subadditivity lemma. A sequence a_{n} is called subadditive if $a_{m+n} \leq a_{m}+a_{n}$ for all m, n. Fekete's lemma asserts that a_{n} / n converges if a_{n} is subadditive.]
(b) Prove that $\tau(\phi)=\lim _{n} t_{n}$ does not depend on the choice of x.

The quantity $\tau(\phi)$ is called the translation length of ϕ.
6. Let X be a δ-hyperbolic metric space, and let $\alpha, \beta:[0, L] \rightarrow X$ be geodesics with $\alpha(0)=\beta(0)$. Prove that

$$
d(\alpha(t), \beta(t)) \leq 2 \delta+d(\alpha(L), \beta(L))
$$

for all $t \in[0, L]$.
7. Let X be a proper metric space (i.e. closed balls are compact). A subspace $Y \subseteq X$ is called convex if every geodesic in X with endpoints in Y is contained in Y.
(a) For any $x \in X$ and any non-empty closed subspace $Y \subseteq X$, prove that there is $y_{0} \in Y$ such that $d\left(x, y_{0}\right) \leq d(x, y)$ for all $y \in Y$.
(b) Give an example of a δ-hyperbolic metric space X, a closed, convex subset $Y \subseteq X$, a point $x \in X$ and a pair of distinct points $y_{1}, y_{2} \in Y$ that both minimise distance to x among all points in Y.
(c) Let X be δ-hyperbolic and Y a convex subspace. Suppose that $y_{1}, y_{2} \in Y$ both have the property that $d\left(x, y_{i}\right) \leq d(x, y)$ for all $y \in Y$. Prove that $d\left(y_{1}, y_{2}\right) \leq 4 \delta$.
8. Let X be a geodesic metric space and consider a geodesic triangle $\Delta=[x, y] \cup[y, z] \cup[z, x]$ in X.
(a) Let $p \in[x, y]$ be the point such that

$$
2 d(p, x)=d(y, x)+d(z, x)-d(y, z)
$$

and let $p^{\prime} \in[x, y]$ be such that

$$
2 d\left(p^{\prime}, y\right)=d(x, y)+d(z, y)-d(x, z) .
$$

Prove that $p=p^{\prime}$.
(b) Define $q \in[x, z]$ similarly to $p \in[x, y]$. Prove that $d(x, p)=d(x, q)$ and $d(p, q) \leq 4 \delta$.
(c) For any $a \in[x, y]$ and $b \in[x, z]$ with

$$
d(x, a)=d(x, b) \leq d(x, p)
$$

prove that $d(a, b) \leq 6 \delta$.
9. Let X be a δ-hyperbolic space and $Y \subseteq X$ a bounded subspace. Consider the function $R_{Y}: X \rightarrow$ $\mathbb{R}_{\geq 0}$ defined by

$$
R_{Y}(x)=\sup _{y \in Y} d(x, y)
$$

The radius of Y is defined to be

$$
r_{Y}:=\inf _{x \in X} R_{Y}(x) .
$$

A point $x \in X$ is called an ϵ-centre of Y if $R_{Y}(x) \leq r_{Y}+\epsilon$. Prove that, if x, x^{\prime} are both ϵ-centres of Y, then $d\left(x, x^{\prime}\right) \leq 12 \delta+2 \epsilon$. [Hint: Let m be the midpoint of $\left[x, x^{\prime}\right]$ and consider $y \in Y$ such that $d(m, y) \geq r_{Y}$.]
10. Let G be a hyperbolic group and S a finite generating set. Let $\gamma \in G$ be an element of finite order.
(a) Show that $\langle\gamma\rangle \subseteq \operatorname{Cay}_{S}(G)$ has a 1-centre $g \in G$, in the sense of Question 9 .
(b) Prove that γg is also a 1-centre of $\langle\gamma\rangle$.
(c) Deduce that G has finitely many conjugacy classes of elements of finite order.

