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1. Consider the infinite path γ : [1,∞)→ R2 defined by

γ(t) = (t cos(log t), t sin(log t)) .

Prove that γ is a quasigeodesic (for suitable constants). Deduce that the analogue of the Mostow–
Morse lemma fails for R2. [You may use that the length of a smooth path in R2 can be computed
using the integral

∫
‖γ′‖dt.]

2. Two groups G1 and G2 are called (abstractly) commensurable if there are subgroups Hi ≤ Gi

such that |Gi : Hi| < ∞ and H1
∼= H2. Prove that commensurable finitely generated groups are

quasi-isometric.

3. Let P be a geodesic n-gon in a δ-hyperbolic metric space X. Prove that every side of P is contained
in the closed (n− 2)δ-neighbourhood of the other sides of P .

4. Let φ be an isometry of a δ-hyperbolic metric space X with no fixed point. Suppose that α, β : R→
X are both geodesic lines preserved by φ. Prove that dHaus(imα, imβ) is finite, and furthermore
that dHaus(imα, imβ) ≤ 2δ.

5. Let φ be an isometry of a metric space X.

(a) For any x ∈ X, prove that the sequence of real numbers

tn =
d(x, gnx)

n

is convergent. [You may use without proof Fekete’s subadditivity lemma. A sequence an is
called subadditive if am+n ≤ am +an for all m,n. Fekete’s lemma asserts that an/n converges
if an is subadditive.]

(b) Prove that τ(φ) = limn tn does not depend on the choice of x.

The quantity τ(φ) is called the translation length of φ.

6. Let X be a δ-hyperbolic metric space, and let α, β : [0, L] → X be geodesics with α(0) = β(0).
Prove that

d(α(t), β(t)) ≤ 2δ + d(α(L), β(L))

for all t ∈ [0, L].

7. Let X be a proper metric space (i.e. closed balls are compact). A subspace Y ⊆ X is called convex
if every geodesic in X with endpoints in Y is contained in Y .

(a) For any x ∈ X and any non-empty closed subspace Y ⊆ X, prove that there is y0 ∈ Y such
that d(x, y0) ≤ d(x, y) for all y ∈ Y .

(b) Give an example of a δ-hyperbolic metric space X, a closed, convex subset Y ⊆ X, a point
x ∈ X and a pair of distinct points y1, y2 ∈ Y that both minimise distance to x among all
points in Y .

(c) Let X be δ-hyperbolic and Y a convex subspace. Suppose that y1, y2 ∈ Y both have the
property that d(x, yi) ≤ d(x, y) for all y ∈ Y . Prove that d(y1, y2) ≤ 4δ.
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8. Let X be a geodesic metric space and consider a geodesic triangle ∆ = [x, y] ∪ [y, z] ∪ [z, x] in X.

(a) Let p ∈ [x, y] be the point such that

2d(p, x) = d(y, x) + d(z, x)− d(y, z)

and let p′ ∈ [x, y] be such that

2d(p′, y) = d(x, y) + d(z, y)− d(x, z) .

Prove that p = p′.

(b) Define q ∈ [x, z] similarly to p ∈ [x, y]. Prove that d(x, p) = d(x, q) and d(p, q) ≤ 4δ.

(c) For any a ∈ [x, y] and b ∈ [x, z] with

d(x, a) = d(x, b) ≤ d(x, p) ,

prove that d(a, b) ≤ 6δ.

9. Let X be a δ-hyperbolic space and Y ⊆ X a bounded subspace. Consider the function RY : X →
R≥0 defined by

RY (x) = sup
y∈Y

d(x, y) .

The radius of Y is defined to be
rY := inf

x∈X
RY (x) .

A point x ∈ X is called an ε-centre of Y if RY (x) ≤ rY + ε. Prove that, if x, x′ are both ε-centres
of Y , then d(x, x′) ≤ 12δ+ 2ε. [Hint: Let m be the midpoint of [x, x′] and consider y ∈ Y such that
d(m, y) ≥ rY .]

10. Let G be a hyperbolic group and S a finite generating set. Let γ ∈ G be an element of finite order.

(a) Show that 〈γ〉 ⊆ CayS(G) has a 1-centre g ∈ G, in the sense of Question 9.

(b) Prove that γg is also a 1-centre of 〈γ〉.
(c) Deduce that G has finitely many conjugacy classes of elements of finite order.
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